extension | φ:Q→Aut N | d | ρ | Label | ID |
C52⋊1(C2×C4) = D5×F5 | φ: C2×C4/C1 → C2×C4 ⊆ Aut C52 | 20 | 8+ | C5^2:1(C2xC4) | 200,41 |
C52⋊2(C2×C4) = D5⋊F5 | φ: C2×C4/C1 → C2×C4 ⊆ Aut C52 | 10 | 8+ | C5^2:2(C2xC4) | 200,42 |
C52⋊3(C2×C4) = C10×F5 | φ: C2×C4/C2 → C4 ⊆ Aut C52 | 40 | 4 | C5^2:3(C2xC4) | 200,45 |
C52⋊4(C2×C4) = C2×D5.D5 | φ: C2×C4/C2 → C4 ⊆ Aut C52 | 40 | 4 | C5^2:4(C2xC4) | 200,46 |
C52⋊5(C2×C4) = C2×C5⋊F5 | φ: C2×C4/C2 → C4 ⊆ Aut C52 | 50 | | C5^2:5(C2xC4) | 200,47 |
C52⋊6(C2×C4) = C2×C52⋊C4 | φ: C2×C4/C2 → C4 ⊆ Aut C52 | 20 | 4+ | C5^2:6(C2xC4) | 200,48 |
C52⋊7(C2×C4) = D5×Dic5 | φ: C2×C4/C2 → C22 ⊆ Aut C52 | 40 | 4- | C5^2:7(C2xC4) | 200,22 |
C52⋊8(C2×C4) = Dic5⋊2D5 | φ: C2×C4/C2 → C22 ⊆ Aut C52 | 20 | 4+ | C5^2:8(C2xC4) | 200,23 |
C52⋊9(C2×C4) = D5×C20 | φ: C2×C4/C4 → C2 ⊆ Aut C52 | 40 | 2 | C5^2:9(C2xC4) | 200,28 |
C52⋊10(C2×C4) = C4×C5⋊D5 | φ: C2×C4/C4 → C2 ⊆ Aut C52 | 100 | | C5^2:10(C2xC4) | 200,33 |
C52⋊11(C2×C4) = C10×Dic5 | φ: C2×C4/C22 → C2 ⊆ Aut C52 | 40 | | C5^2:11(C2xC4) | 200,30 |
C52⋊12(C2×C4) = C2×C52⋊6C4 | φ: C2×C4/C22 → C2 ⊆ Aut C52 | 200 | | C5^2:12(C2xC4) | 200,35 |